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1. Introduction

In the early 1600s, a Scottish necromancer took two Greek words, smashed them together, and published
in Latin. Ok, maybe he didn’t really raise the dead. But I’d imagine that whatever pain would be
involved in doing so pales in comparison to the horrors faced by math students when introduced to this
Scotsman’s word: logarithm.

Historically, logarithms were a revolutionary tool for making computations easier. Yet in my teaching
experience, I’ve found many a student grow frustrated when needing to understand them. And I don’t
think I’ll get much push-back for suggesting that logarithms are one of the more difficult topics for
precalculus mathematics courses. My YouTube audience would seem to agree.

Figure 1: Looks like it’s time for a lesson on logarithms!

But what exactly makes learning about them so difficult? Maybe it’s the need to move beyond the
basic operations of addition, subtraction, multiplication, and division. Possibly it’s the usage of functions
and other mathematical abstractions. Or perhaps it’s the intimidating nature of the word itself.

Rather than discuss a topic with which a large percentage of viewers wouldn’t be comfortable, I figured
this would be a perfect opportunity to put together a math lesson—so welcome to “Topics That T-West
Thinks Everyone Should Know About Logarithms!”

We’ll cover the following:

• Where the word logarithm comes from and what it means.

• The relationship between logarithms and exponents.
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• How logarithms turn difficult multiplications into easier additions.

• The intuition driving various logarithm formulas and properties.

• What is “natural” about the natural logarithm and the number e.

• And why logarithms result in “fast” algorithms and “slow” growth.

Oh, and we’ll discuss some Scottish necromancy along the way.

1.1 About These Notes

These notes accompany a YouTube video about logarithms (the link will be posted when the video is
uploaded). Throughout the text, segments of the video corresponding to the relevant topics are embedded.
The notes themselves are availble online at twestaoe.net/math/logarithms. They’re also available to
download as a pdf (although the pdf is missing the interactive features available on the website).

In high school mathematics I’d imagine most students get by without ever reading the textbook. I
know I mostly didn’t. And to be fair, most of those books probably aren’t great reads anyway. But as
we advance in our mathematical careers, reading the book becomes a crucial part of the subject. And
it can be difficult to learn how to read a math textbook—especially for an algebra or precalculus level
where most students don’t have any prior experience in doing do.

My hope is that by including videos along with these notes, they become easier to read. And thereby
help not just to teach about logarithms, but also to serve as an introduction to reading mathematics.
And since a large part of such reading involves solving problems, I’ve included a variety of exercises
throughout the text. They should provide some fun and interesting puzzles to work through.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License.

2. What Is a Logarithm?

Our journey begins in the late 1500s and early 1600s. Mathematicians of the era faced a key challenge,
one with which I’m sure all of us are familiar: multiplication is harder than addition. What do I mean
by “harder?” Well, consider adding two multiple-digit numbers: 243 and 142. The standard algorithm is
to line these numbers up and add their pairs of digits individually from right to left.

243
+ 142

243
+ 142

5

243
+ 142

85

243
+ 142

385

Additions can get a bit more difficult if we need to “carry a 1,” but overall this process is pretty straight-
forward.

Multiplication, on the other hand, involves more steps. Let’s take 243 and 142 once again and multiply
them.

243
· 142

243
· 142
486

243
· 142
486
9720

243
· 142
486
9720

24300

243
· 142
486

9720
+ 24300

34506

Again we start by lining up the numbers. But now we need to multiply the top number by every digit
in the bottom number. And we have to shift the results as we go along, then add everything together at
the end.

https://www.twestaoe.net/math/logarithms/
https://www.twestaoe.net/math/logarithms.pdf
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


2.1 It All Starts With Counting 3

Phew! That was a lot of work. It’s nothing new or difficult, just rather tedious. But more than that,
we have lots of opportunities for making mistakes. Keeping track of all of the digits and carries and shifts
by hand requires a good deal of discipline and attention to detail. Wouldn’t it be great if we didn’t have
to do all of this? Well, that’s where logarithms are going to help us!

Logarithms first were created as a tool to avoid multiplications. As the centuries have gone on
we’ve learned that logarithms have a myriad of other mathematical properties. But this is where we’ll
start: simple addition and multiplication. To begin, we’ll reexamine some of the arithmetic we learned
in elementary school—doing so will help us motivate the definition of a logarithm.

2.1 It All Starts With Counting

Let’s think back to our early educations. First we learned about counting, then about addition and
subtraction, and then about multiplication, where we were introducted to evaluating expressions such
as 3 · 5. Now if your first instinct is to yell out “15,” then congratulations—you memorized your times
tables when you were a child! If you’re anything like me, then you had to learn the products of single-digit
number pairs.

· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 2 6 9 12 15 18 21 24 27
4 0 2 8 12 16 20 24 28 32 36
5 0 2 10 15 20 25 30 25 40 45
6 0 2 12 18 24 30 36 42 48 54
7 0 2 14 21 28 35 42 49 56 63
8 0 2 16 24 32 40 48 56 64 72
9 0 2 18 27 36 45 54 63 72 89

But what if we didn’t have this table? How would we know what to do when faced with a multiplication
problem? Well, we probalby learned that multiplication is a “repeated addition.” If we’re given 3 · 5, we
can write

3 · 5 = 3 + 3 + 3 + 3 + 3︸ ︷︷ ︸
5 times

= 15.

We add 3 to itself 5 times, and our answer is the total sum of 15. The multiplication consists of three
components: a number, a count, and a total. To be a bit more general, we can write

number · count = number + number + · · ·+ number︸ ︷︷ ︸
count times

= total.

The count tells us how many times to add the number to itself in order to get the total.
As we take math classes, we’re asked to solve “multiplication problems.” These problems present us

with two of the three components and endeavor us with discerning the third. In elementary school, we’re
given the number and the count, and we have to find the total. A question might be written as follows,
where we have to fill in the box:

6 · 4 = .

Our answer is the product 24:

6 · 4 = 24 .

Later on in our education, we’re asked another type of question. Instead of the number and the count,
we’re given the number and the total. We have to find the count and write it in the box:

6 · = 24,

6 · 4 = 24.
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Or, instead of a box, the question may use a variable:

6n = 24.

Here we’re asked to “solve for n.” Which is just answering the question, “how many times do we add 6
to get 24?” Of course we could figure this out by “dividing both sides by 6:”

6n = 24,

�6n

�6
=

24

6
,

n = 4.

But let’s think about how to solve this type of problem if we didn’t know an algorithm for division. We
could figure out the answer just by counting! We add 6 to itself until we get to 24, then count the number
of 6’s we need:

6 = 6,

6 + 6 = 12,

6 + 6 + 6 = 18,

6 + 6 + 6 + 6︸ ︷︷ ︸
4 times

= 24.

Our answer is n = 4.
The algorithms we learn for long division and for finding and cancelling out common factors are

definitely useful. But it’s important to remember that they’re tools we use for finding the count. And if
we wanted to, we could just do the counting ourselves.

2.2 Repeated Multiplication

As we advance further in school, following up after repeated additions, we have repeated multiplications.
And we represent these repetitions using exponents. For example,

35 = 3 · 3 · 3 · 3 · 3︸ ︷︷ ︸
5 times

= 243.

Now we probably don’t have 35 memorized like we do our multiplication tables. But we can just multiply
by 3 repeatedly to get the answer. We have the same three components as before: a number, a count,
and a total. In general we can write

numbercount = number ∗ number ∗ · · · ∗ number︸ ︷︷ ︸
count times

= total.

Here we use a ∗ instead of a · to denote multiplication, to avoid confusion with the center dots. In this
context we call the number the base, the count the exponent, and the total the product :

baseexponent = product.

When you see the word exponent, think about the word expose. The term refers to the written appearance
of the number as being exposed up and to the right, rather than to any particular mathematical property.

Just like with multiplication, “math problems” involving exponentiation give use two pieces of infor-
mation and task us with finding the third. We start, once again, by being given a number and a count
and being asked to find the total:

63 = .

And again, we can multiply 6 by itself 3 times to obtain the answer:

63 = 6 · 6 · 6︸ ︷︷ ︸
3 times

= 243 .



2.3 Defintion of a Logarithm 5

Now comes the more interesting question. Suppose, as we did previous with “multiplication problems,”
that we’re given a number and a total. How do we “solve for the count?” Here we don’t have the division
algorithm to aide us like we did with our earlier analogous situation. But we still can resort to counting.
Suppose we want to solve

2n = 32.

We can do so by multiplying 2 by itself until we reach 32 while counting the number of multiplications:

2 = 2,

2 · 2 = 4,

2 · 2 · 2 = 8,

2 · 2 · 2 · 2 = 16,

2 · 2 · 2 · 2 · 2︸ ︷︷ ︸
5 times

= 32.

Thus our answer is n = 5. And just like we use the name division refer to the process of finding the count
when working with repeated addition, we need a name for the concept of finding the count when working
with repeated multiplication. And for that, it’s time to introduce logarithms.

2.3 Defintion of a Logarithm

Let’s dive right in and state the definition.

Definition 1 (Logarithm). Let x and b be positive real numbers with b not equal to 1. If n is a number
such that b multiplied by itself n times equals x—that is, such that bn = x—we write

logb x = n.

This notation is read “the base b logarithm of x equals n,” or more simply as “log base b of x is n.”
Here b is called the base of the logarithm, and x is called the argument of the logarithm.

We’ll discuss more advanced properties and techniques for computing logarithms later. But for now
let’s just concentrate on what this definition is telling us.

When we have an exponential equation such as

25 = 32,

we have another notation for writing it:
log2 32 = 5.

This equation is read, “the base 2 logarithm of 32 equals 5.” It tells us that if we multiply 2 by itself
5 times, we get 32.

Now for some logarithm examples. If we’re given an equation and asked to find what the exponent
is, we can do what we did previous: multiply the base by itself until we reach the product, then count
the number of times we multiplied.

1. log2 64.

To calculate this logarithm, write out products of 2 until we reach 64. Hence log2 64 = 6.

2.4 Some Caveats About the Definition

In our definition of logb x, we impose restrictions on the numbers b and x. We require that both of these
are positive, and further that b is not equal to 1. What do these conditions mean, and why are they
important?

We define the base b logarithm of x only when the the following conditions hold:
For example, what happens if b or x is zero? Well, log2 0 is not defined, since there is no power of 2

such that 2n = 0. Multiplying 2 by itself just gives bigger and bigger positive numbers, we can’t multiply
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by 2 and get zero. Similarly, since 0 · 0 = 0, there is no n such that 0n = 2. Multiplying repeatedly by
zero keeps yielding zero. Hence log0 2 is not defined either.

You’ll find that we don’t gain any utility from attempting to include other cases in our definition of
logarithms, anyway. In a more advanced course we could study how complex numbers relate to logarithms.
But for now, and for general-purpose usage of logarithms with real numbers, these restrictions suffice.

2.5 Exercises

3. The Inverse of Exponentiation

3.1 What Is an “Inverse?”

3.2 How Logarithms and Exponentiation “Undo” Each Other

3.3 But Isn’t Taking Roots an “Inverse” of Exponentiation Too?

3.4 Exercises
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